Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 637
Filtrar
1.
Theor Appl Genet ; 137(6): 123, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722407

RESUMEN

KEY MESSAGE: BrBCAT1 encoding a branched-chain amino acid aminotransferase was responsible for the glossy trait, which was verified by allelic mutants in Chinese cabbage. The glossy characteristic, thanks to the epicuticular wax crystal deficiency, is an excellent commodity character for leafy vegetables. Herein, two allelic glossy green mutants, wdm11 and wdm12, were isolated from an ethyl methane sulfonate (EMS)-mutagenized population of Chinese cabbage, and the mutant phenotype was recessive inherited. Cryo-SEM detected that epicuticular wax crystal in the mutant leaves was virtually absent. MutMap and Kompetitive allele-specific PCR analyses demonstrated that BraA06g006950.3C (BrBCAT1), homologous to AtBCAT1, encoding a branched-chain amino acid aminotransferase was the candidate gene. A SNP (G to A) on the fourth exon of BrBCAT1 in wdm11 caused the 233rd amino acid to change from glycine (G) to aspartic acid (D). A SNP (G to A) on the second exon of BrBCAT1 in wdm12 led to the 112th amino acid change from glycine (G) to arginine (R). Both of the allelic mutants had genetic structural variation in the candidate gene, which indicated that the mutant phenotype was triggered by the BrBCAT1 mutation. The expression levels of BrBCAT1 and genes related to fatty acid chain extension were decreased significantly in the mutant compared to the wild-type, which might result in epicuticular wax crystal deficiency in the mutants. Our findings proved that the mutation of BrBCAT1 induced the glossy phenotype and provided a valuable gene resource for commodity character improvement in Chinese cabbage.


Asunto(s)
Alelos , Brassica , Mutación , Fenotipo , Ceras , Brassica/genética , Ceras/química , Ceras/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Polimorfismo de Nucleótido Simple , Hojas de la Planta/genética , Transaminasas/genética
2.
BMC Plant Biol ; 24(1): 330, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664602

RESUMEN

Whole-genome doubling leads to cell reprogramming, upregulation of stress genes, and establishment of new pathways of drought stress responses in plants. This study investigated the molecular mechanisms of drought tolerance and cuticular wax characteristics in diploid and tetraploid-induced Erysimum cheiri. According to real-time PCR analysis, tetraploid induced wallflowers exhibited increased expression of several genes encoding transcription factors (TFs), including AREB1 and AREB3; the stress response genes RD29A and ERD1 under drought stress conditions. Furthermore, two cuticular wax biosynthetic pathway genes, CER1 and SHN1, were upregulated in tetraploid plants under drought conditions. Leaf morphological studies revealed that tetraploid leaves were covered with unique cuticular wax crystalloids, which produced a white fluffy appearance, while the diploid leaves were green and smooth. The greater content of epicuticular wax in tetraploid leaves than in diploid leaves can explain the decrease in cuticle permeability as well as the decrease in water loss and improvement in drought tolerance in wallflowers. GC‒MS analysis revealed that the wax components included alkanes, alcohols, aldehydes, and fatty acids. The most abundant wax compound in this plant was alkanes (50%), the most predominant of which was C29. The relative abundance of these compounds increased significantly in tetraploid plants under drought stress conditions. These findings revealed that tetraploid-induced wallflowers presented upregulation of multiple drought-related and wax biosynthesis genes; therefore, polyploidization has proved useful for improving plant drought tolerance.


Asunto(s)
Diploidia , Sequías , Regulación de la Expresión Génica de las Plantas , Tetraploidía , Ceras , Ceras/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Epidermis de la Planta/genética , Epidermis de la Planta/metabolismo , Epidermis de la Planta/fisiología , Perfilación de la Expresión Génica , Resistencia a la Sequía
3.
Planta ; 259(4): 89, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38467941

RESUMEN

MAIN CONCLUSION: Taiwan oil millet has two types of epicuticular wax: platelet wax composed primarily of octacosanol and filament wax constituted essentially by the singular compound of octacosanoic acid. Taiwan oil millet (TOM-Eccoilopus formosanus) is an orphan crop cultivated by the Taiwan indigenous people. It has conspicuous white powder covering its leaf sheath indicating abundant epicuticular waxes, that may contribute to its resilience. Here, we characterized the epicuticular wax secretion in TOM leaf blade and leaf sheath using various microscopy techniques, as well as gas chromatography to determine its composition. Two kinds of waxes, platelet and filaments, were secreted in both the leaf blades and sheaths. The platelet wax is secreted ubiquitously by epidermal cells, whereas the filament wax is secreted by a specific cell called epidermal cork cells. The newly developed filament waxes were markedly re-synthesized by the epidermal cork cells through papillae protrusions on the external periclinal cell wall. Ultrastructural images of cork cell revealed the presence of cortical endoplasmic reticulum (ER) tubules along the periphery of plasma membrane (PM) and ER-PM contact sites (EPCS). The predominant wax component was a C28 primary alcohol in leaf blade, and a C28 free fatty acid in the leaf sheath, pseudopetiole and midrib. The wax morphology present in distinct plant organs corresponds to the specific chemical composition: platelet wax composed of alcohols exists mainly in the leaf blade, whereas filament wax constituted mainly by the singular compound C28 free fatty acids is present abundantly in leaf sheath. Our study clarifies the filament wax composition in relation to a previous study in sorghum. Both platelet and filament waxes comprise a protection barrier for TOM.


Asunto(s)
Mijos , Sorghum , Humanos , Taiwán , Microscopía Electrónica de Rastreo , Sorghum/metabolismo , Ceras/metabolismo , Hojas de la Planta/metabolismo , Epidermis de la Planta/metabolismo
4.
New Phytol ; 242(5): 2251-2269, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38501480

RESUMEN

The plant cuticle is a hydrophobic barrier, which seals the epidermal surface of most aboveground organs. While the cuticle biosynthesis of angiosperms has been intensively studied, knowledge about its existence and composition in nonvascular plants is scarce. Here, we identified and characterized homologs of Arabidopsis thaliana fatty acyl-CoA reductase (FAR) ECERIFERUM 4 (AtCER4) and bifunctional wax ester synthase/acyl-CoA:diacylglycerol acyltransferase 1 (AtWSD1) in the liverwort Marchantia polymorpha (MpFAR2 and MpWSD1) and the moss Physcomitrium patens (PpFAR2A, PpFAR2B, and PpWSD1). Although bryophyte harbor similar compound classes as described for angiosperm cuticles, their biosynthesis may not be fully conserved between the bryophytes M. polymorpha and P. patens or between these bryophytes and angiosperms. While PpFAR2A and PpFAR2B contribute to the production of primary alcohols in P. patens, loss of MpFAR2 function does not affect the wax profile of M. polymorpha. By contrast, MpWSD1 acts as the major wax ester-producing enzyme in M. polymorpha, whereas mutations of PpWSD1 do not affect the wax ester levels of P. patens. Our results suggest that the biosynthetic enzymes involved in primary alcohol and wax ester formation in land plants have either evolved multiple times independently or undergone pronounced radiation followed by the formation of lineage-specific toolkits.


Asunto(s)
Ceras , Ceras/metabolismo , Alcoholes/metabolismo , Filogenia , Marchantia/genética , Marchantia/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Bryopsida/genética , Bryopsida/metabolismo , Briófitas/genética , Briófitas/metabolismo , Aldehído Oxidorreductasas/metabolismo , Aldehído Oxidorreductasas/genética , Vías Biosintéticas/genética , Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Aciltransferasas/metabolismo , Aciltransferasas/genética , Evolución Biológica , Arabidopsis/genética , Arabidopsis/metabolismo , Mutación/genética
5.
Neotrop Entomol ; 53(3): 641-646, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38329711

RESUMEN

In holometabolous insects, the immature or larval stage is characterized by a high rate of food consumption. The nutrients obtained from which are directed towards the maintenance of metabolism, growth, pupation, and metamorphosis. However, when resources are scarce, the lack thereof can affect the growth rate and compromise the metamorphosis and formation of adults. Do increased energy expenditures yield outcomes similar to those resulting from restricted food intake during the larval stage? We hypothesized that removing the wax layer from the larvae of the ladybird Cryptolaemus montrouzieri Mulsant, 1850 would result in increased energy expenditure, which can compromise both larval growth and adult size. We compared the development time, feeding rate, and adult size of larvae with an intact wax layer, and those with constantly removed wax layers. We found that the production of the wax layer was continuous. Unlike the waxed larvae, the larvae of C. montrouzieri extended their development time in response to energy depletion through wax removal. The total number of mealybugs consumed by waxless larvae was higher than the total number consumed by waxed larvae; however, the daily consumption of waxless larvae was lower than that of waxed larvae. Furthermore, the adults of waxless larvae were smaller than those whose larvae had intact wax layers. This suggests that the cost associated with wax layer secretion is a pivotal factor in larval growth. Removing this layer does not get compensated by increased larval feeding or extended development time.


Asunto(s)
Escarabajos , Larva , Ceras , Animales , Escarabajos/crecimiento & desarrollo , Larva/crecimiento & desarrollo , Ceras/metabolismo , Metabolismo Energético , Conducta Alimentaria , Metamorfosis Biológica
6.
Nat Plants ; 10(1): 131-144, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38172573

RESUMEN

Cuticular waxes play important roles in plant development and the interaction between plants and their environment. Researches on wax biosynthetic pathways have been reported in several plant species. Also, wax formation is closely related to environmental condition. However, the regulatory mechanism between wax and environmental factors, especially essential mineral elements, is less studied. Here we found that nitrogen (N) played a negative role in the regulation of wax synthesis in apple. We therefore analysed wax content, composition and crystals in BTB-TAZ domain protein 2 (MdBT2) overexpressing and antisense transgenic apple seedlings and found that MdBT2 could downregulate wax biosynthesis. Furthermore, R2R3-MYB transcription factor 16-like protein (MdMYB106) interacted with MdBT2, and MdBT2 mediated its ubiquitination and degradation through the 26S proteasome pathway. Finally, HXXXD-type acyl-transferase ECERIFERUM 2-like1 (MdCER2L1) was confirmed as a downstream target gene of MdMYB106. Our findings reveal an N-mediated apple wax biosynthesis pathway and lay a foundation for further study of the environmental factors associated with wax regulatory networks in apple.


Asunto(s)
Arabidopsis , Malus , Arabidopsis/genética , Malus/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Aciltransferasas/metabolismo , Ceras/metabolismo , Regulación de la Expresión Génica de las Plantas
7.
J Agric Food Chem ; 72(3): 1592-1606, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38198510

RESUMEN

Cuticular wax, a critical defense layer for plants, remains a relatively unexplored factor in rumen fermentation. We investigated the impact of cuticular wax on rumen fermentation using triticale as a model. In total, six wax classes were identified, including fatty acids, aldehydes, alkane, primary alcohol, alkyresorcinol, and ß-diketone, with low-bloom lines predominated by 46.05% of primary alcohols and high-bloom lines by 35.64% of ß-diketone. Low-wax addition (2.5 g/kg DM) increased the gas production by 19.25% (P < 0.05) and total volatile fatty acids by 6.34% (P > 0.05), and enriched key carbohydrate-fermenting rumen microbes like Saccharofermentans, Ruminococcus, and Prevotellaceae, when compared to non-wax groups. Metabolites linked to nucleotide metabolism, purine metabolism, and protein/fat digestion in the rumen showed a positive correlation with low-wax, benefiting rumen microbes. This study highlights the intricate interplay among cuticular wax, rumen microbiota, fermentation, and metabolomics in forage digestion, providing insights into livestock nutrition and forage utilization.


Asunto(s)
Microbiota , Triticale , Animales , Rumen/metabolismo , Triticale/metabolismo , Fermentación , Ceras/metabolismo , Alimentación Animal/análisis
8.
J Exp Bot ; 75(7): 1903-1918, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37856192

RESUMEN

The plant cuticle is an important protective barrier on the plant surface, constructed mainly by polymerized cutin matrix and a complex wax mixture. Although the pathway of plant cuticle biosynthesis has been clarified, knowledge of the transcriptional regulation network underlying fruit cuticle formation remains limited. In the present work, we discovered that tomato fruits of the NAC transcription factor SlNOR-like1 knockout mutants (nor-like1) produced by CRISPR/Cas9 [clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9] displayed reduced cutin deposition and cuticle thickness, with a microcracking phenotype, while wax accumulation was promoted. Further research revealed that SlNOR-like1 promotes cutin deposition by binding to the promoters of glycerol-3-phosphate acyltransferase6 (SlGPAT6; a key gene for cutin monomer formation) and CUTIN DEFICIENT2 (SlCD2; a positive regulator of cutin production) to activate their expression. Meanwhile, SlNOR-like1 inhibits wax accumulation, acting as a transcriptional repressor by targeting wax biosynthesis, and transport-related genes 3-ketoacyl-CoA synthase1 (SlKCS1), ECERIFERUM 1-2 (SlCER1-2), SlWAX2, and glycosylphosphatidylinositol-anchored lipid transfer protein 1-like (SlLTPG1-like). In conclusion, SlNOR-like1 executes a dual regulatory effect on tomato fruit cuticle development. Our results provide a new model for the transcriptional regulation of fruit cuticle formation.


Asunto(s)
Solanum lycopersicum , Factores de Transcripción , Factores de Transcripción/metabolismo , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Fenotipo , Ceras/metabolismo
9.
Plant Physiol Biochem ; 206: 108288, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38160533

RESUMEN

Apple epidermal wax protects plants from environmental stresses, determines fruit gloss and improves postharvest storage quality. However, the molecular mechanisms underlying the biosynthesis and regulation of apple epidermal waxes are not fully understood. In this study, we isolated a MdDEWAX gene from apple, which localized in the nucleus, expressed mainly in apple fruit, and induced by drought. We transformed the MdDEWAX gene into Arabidopsis, and found that heterologous expression of MdDEWAX reduced the accumulation of cuticular waxes in leaves and stems, increased epidermal permeability, the rate of water loss, and the rate of chlorophyll extraction of leaves and stems, altered the sensitivity to ABA, and reduced drought tolerance. Meanwhile, overexpression or silencing of the gene in the epidermis of apple fruits decreased or increased wax content, respectively. This study provides candidate genes for breeding apple cultivars and rootstocks with better drought tolerance.


Asunto(s)
Arabidopsis , Malus , Resistencia a la Sequía , Factores de Transcripción/genética , Fitomejoramiento , Arabidopsis/genética , Sequías , Malus/genética , Malus/metabolismo , Ceras/metabolismo , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
10.
J Agric Food Chem ; 71(40): 14493-14504, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37682587

RESUMEN

Cuticular wax, forming the first line of defense against adverse environmental stresses, comprises very long-chain fatty acids (VLCFAs) and their derivatives. 3-Ketoacyl-CoA synthase (KCS) is a rate-limiting enzyme for VLCFA biosynthesis. In this study, we isolated KCS10, a KCS gene from alfalfa, and analyzed the effect of gene expression on wax production and drought stress in transgenic plants. MsKCS10 overexpression increased compact platelet-like crystal deposition and promoted primary alcohol biosynthesis through acyl reduction pathways in alfalfa leaves. Overexpression of MsKCS10 induced the formation of coiled-rodlet-like crystals and increased n-alkane content through decarbonylation pathways in tobacco and tomato fruits. Overexpression of MsKCS10 enhanced drought tolerance by limiting nonstomatal water loss, improving photosynthesis, and maintaining osmotic potential under drought stress in transgenic tobacco. In summary, MsKCS10 plays an important role in wax biosynthesis, wax crystal morphology, and drought tolerance, although the mechanisms are different among the plant species. MsKCS10 can be targeted in future breeding programs to improve drought tolerance in plants.


Asunto(s)
Medicago sativa , Ceras , Ceras/metabolismo , Medicago sativa/genética , Medicago sativa/metabolismo , Resistencia a la Sequía , Proteínas de Plantas/metabolismo , Fitomejoramiento , Sequías , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/metabolismo
11.
J Exp Bot ; 74(21): 6575-6587, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37615538

RESUMEN

The plant cuticle, consisting of wax and cutin, is involved in adaptations to various environments. ß-Ketoacyl-CoA synthases (KCSs) usually serve as a component of the fatty acid elongation complex that participates in the production of very long-chain fatty acids and provides precursors for the synthesis of various lipids, including wax; however, we recently reported that KCS3 and KCS12 negatively regulate wax biosynthesis. In this current study, we observed that unlike KCS3-overexpressing (OE) lines, KCS12-OE lines had fused floral organs because of abnormal cuticle biosynthesis. This prompted us to compare the functions of KCS3 and KCS12 during cuticle formation. Mutation of KCS3 caused greater effects on wax production, whereas mutation of KCS12 exerted more severe effects on cutin synthesis. The double-mutant kcs3 kcs12 had significantly increased wax and cutin contents compared to either single-mutant, suggesting that KCS12 and KCS3 have additive effects on cuticle biosynthesis. Cuticle permeability was greater for the double-mutant than for the single mutants, which ultimately led to increased susceptibility to drought stress and floral-organ fusion. Taken together, our results demonstrate the regulatory roles of KCS3 and KCS12 during cuticle biosynthesis, and show that maintaining KCS3 and KCS12 expression at certain levels is essential for the formation of a functional cuticle layer.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ceras , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Mutación , Permeabilidad , Ceras/metabolismo , 3-Oxoacil-(Proteína Transportadora de Acil) Sintasa
12.
Plant Mol Biol ; 112(6): 341-356, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37523053

RESUMEN

Cuticular wax, cutin and suberin polyesters covering the surface of some fleshy fruit are tightly associated with skin color and appearance. ß-Ketoacyl-CoA synthase (KCS) is a rate-limiting enzyme participating in the synthesis of very-long-chain fatty acids (VLCFAs), the essential precursors of cuticular waxes and aliphatic monomers of suberin. However, information on the KCS gene family in pear genome and the specific members involved in pear fruit skin formation remain unclear. In the present study, we performed an investigation of the composition and amount of cuticular waxes, cutin and aliphatic suberin in skins of four sand pear varieties with distinct colors (russet, semi-russet, and green) and demonstrated that the metabolic shifts of cuticular waxes and suberin leading to the significant differences of sand pear skin color. A genome-wide identification of KCS genes from the pear genome was conducted and 35 KCS coding genes were characterized and analyzed. Expression profile analysis revealed that the KCS genes had diverse expression patterns among different pear skins and the transcript abundance of PbrKCS15, PbrKCS19, PbrKCS24, and PbrKCS28 were consistent with the accumulation of cuticular waxes and suberin in fruit skin respectively. Subcellular localization analysis demonstrated that PbrKCS15, PbrKCS19, PbrKCS24 and PbrKCS28 located on the endoplasmic reticulum (ER). Further, transient over-expression of PbrKCS15, PbrKCS19, and PbrKCS24 in pear fruit skins significantly increased cuticular wax accumulation, whereas PbrKCS28 notably induced suberin deposition. In conclusion, pear fruit skin color and appearance are controlled in a coordinated way by the deposition of the cuticular waxes and suberin. PbrKCS15, PbrKCS19, and PbrKCS24 are involved in cuticular wax biosynthesis, and PbrKCS28 is involved in suberin biosynthesis, which play essential roles in pear fruit skin formation. Moreover, this work provides a foundation for further understanding the functions of KCS genes in pear.


Asunto(s)
Pyrus , Pyrus/genética , Pyrus/metabolismo , Frutas/genética , Frutas/metabolismo , Ceras/metabolismo , Regulación de la Expresión Génica de las Plantas
13.
Genes (Basel) ; 14(6)2023 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-37372466

RESUMEN

BAHD acyltransferases (BAHDs), especially those present in plant epidermal wax metabolism, are crucial for environmental adaptation. Epidermal waxes primarily comprise very-long-chain fatty acids (VLCFAs) and their derivatives, serving as significant components of aboveground plant organs. These waxes play an essential role in resisting biotic and abiotic stresses. In this study, we identified the BAHD family in Welsh onion (Allium fistulosum). Our analysis revealed the presence of AfBAHDs in all chromosomes, with a distinct concentration in Chr3. Furthermore, the cis-acting elements of AfBAHDs were associated with abiotic/biotic stress, hormones, and light. The motif of Welsh onion BAHDs indicated the presence of a specific BAHDs motif. We also established the phylogenetic relationships of AfBAHDs, identifying three homologous genes of CER2. Subsequently, we characterized the expression of AfCER2-LIKEs in a Welsh onion mutant deficient in wax and found that AfCER2-LIKE1 plays a critical role in leaf wax metabolism, while all AfCER2-LIKEs respond to abiotic stress. Our findings provide new insights into the BAHD family and lay a foundation for future studies on the regulation of wax metabolism in Welsh onion.


Asunto(s)
Ácidos Grasos , Cebollas , Cebollas/genética , Ácidos Grasos/metabolismo , Filogenia , Epidermis de la Planta/genética , Epidermis de la Planta/metabolismo , Ceras/metabolismo
14.
Int J Mol Sci ; 24(12)2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37373378

RESUMEN

The waxy cuticle covers a plant's aerial surface and contributes to environmental adaptation in land plants. Although past decades have seen great advances in understanding wax biosynthesis in model plants, the mechanisms underlying wax biosynthesis in crop plants such as bread wheat remain to be elucidated. In this study, wheat MYB transcription factor TaMYB30 was identified as a transcriptional activator positively regulating wheat wax biosynthesis. The knockdown of TaMYB30 expression using virus-induced gene silencing led to attenuated wax accumulation, increased water loss rates, and enhanced chlorophyll leaching. Furthermore, TaKCS1 and TaECR were isolated as essential components of wax biosynthetic machinery in bread wheat. In addition, silencing TaKCS1 and TaECR resulted in compromised wax biosynthesis and potentiated cuticle permeability. Importantly, we showed that TaMYB30 could directly bind to the promoter regions of TaKCS1 and TaECR genes by recognizing the MBS and Motif 1 cis-elements, and activate their expressions. These results collectively demonstrated that TaMYB30 positively regulates wheat wax biosynthesis presumably via the transcriptional activation of TaKCS1 and TaECR.


Asunto(s)
Factores de Transcripción , Triticum , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Triticum/genética , Triticum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Plantas/metabolismo , Ceras/metabolismo
15.
Planta ; 258(2): 24, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37344696

RESUMEN

MAIN CONCLUSION: OsFAR1 encodes a fatty acyl-CoA reductase involved in biosynthesis of primary alcohols and plays an important role in drought stress response in rice. Cuticular waxes cover the outermost surface of terrestrial plants and contribute to inhibiting nonstomatal water loss and improving plant drought resistance. Primary alcohols are the most abundant components in the leaf cuticular waxes of rice (Oryza sativa), but the biosynthesis and regulation of primary alcohol remain largely unknown in rice. Here, we identified and characterized an OsFAR1 gene belonging to the fatty acyl-CoA reductases (FARs) via a homology-based approach in rice. OsFAR1 was activated by abiotic stresses and abscisic acid, resulting in increased production of primary alcohol in rice. Heterologous expression of OsFAR1 enhanced the amounts of C22:0 and C24:0 primary alcohols in yeast (Saccharomyces cerevisiae) and C24:0 to C32:0 primary alcohols in Arabidopsis. Similarly, OsFAR1 overexpression significantly increased the content of C24:0 to C30:0 primary alcohols on rice leaves. Finally, OsFAR1 overexpression lines exhibited reduced cuticle permeability and enhanced drought tolerance in rice and Arabidopsis. Taken together, our results demonstrate that OsFAR1 is involved in rice primary alcohol biosynthesis and plays an important role in responding to drought and other environmental stresses.


Asunto(s)
Arabidopsis , Oryza , Oryza/genética , Oryza/metabolismo , Resistencia a la Sequía , Arabidopsis/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Alcoholes/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Sequías , Alcoholes Grasos/metabolismo , Ceras/metabolismo , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/metabolismo
16.
New Phytol ; 239(5): 1903-1918, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37349864

RESUMEN

The cuticle is a protective layer covering aerial plant organs. We studied the function of waxes for the establishment of the cuticular barrier in barley (Hordeum vulgare). The barley eceriferum mutants cer-za.227 and cer-ye.267 display reduced wax loads, but the genes affected, and the consequences of the wax changes for the barrier function remained unknown. Cuticular waxes and permeabilities were measured in cer-za.227 and cer-ye.267. The mutant loci were isolated by bulked segregant RNA sequencing. New cer-za alleles were generated by genome editing. The CER-ZA protein was characterized after expression in yeast and Arabidopsis cer4-3. Cer-za.227 carries a mutation in HORVU5Hr1G089230 encoding acyl-CoA reductase (FAR1). The cer-ye.267 mutation is located to HORVU4Hr1G063420 encoding ß-ketoacyl-CoA synthase (KAS1) and is allelic to cer-zh.54. The amounts of intracuticular waxes were strongly decreased in cer-ye.267. The cuticular water loss and permeability of cer-za.227 were similar to wild-type (WT), but were increased in cer-ye.267. Removal of epicuticular waxes revealed that intracuticular, but not epicuticular waxes are required to regulate cuticular transpiration. The differential decrease in intracuticular waxes between cer-za.227 and cer-ye.267, and the removal of epicuticular waxes indicate that the cuticular barrier function mostly depends on the presence of intracuticular waxes.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Hordeum , Proteínas de Saccharomyces cerevisiae , Hordeum/genética , Hordeum/metabolismo , Hojas de la Planta/metabolismo , Agua/metabolismo , Saccharomyces cerevisiae/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Ceras/metabolismo , Mutación/genética , Epidermis de la Planta/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/genética , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/metabolismo
17.
Plant Cell ; 35(8): 2736-2749, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37233025

RESUMEN

Understanding gene regulatory networks is essential to elucidate developmental processes and environmental responses. Here, we studied regulation of a maize (Zea mays) transcription factor gene using designer transcription activator-like effectors (dTALes), which are synthetic Type III TALes of the bacterial genus Xanthomonas and serve as inducers of disease susceptibility gene transcription in host cells. The maize pathogen Xanthomonas vasicola pv. vasculorum was used to introduce 2 independent dTALes into maize cells to induced expression of the gene glossy3 (gl3), which encodes a MYB transcription factor involved in biosynthesis of cuticular wax. RNA-seq analysis of leaf samples identified, in addition to gl3, 146 genes altered in expression by the 2 dTALes. Nine of the 10 genes known to be involved in cuticular wax biosynthesis were upregulated by at least 1 of the 2 dTALes. A gene previously unknown to be associated with gl3, Zm00001d017418, which encodes aldehyde dehydrogenase, was also expressed in a dTALe-dependent manner. A chemically induced mutant and a CRISPR-Cas9 mutant of Zm00001d017418 both exhibited glossy leaf phenotypes, indicating that Zm00001d017418 is involved in biosynthesis of cuticular waxes. Bacterial protein delivery of dTALes proved to be a straightforward and practical approach for the analysis and discovery of pathway-specific genes in maize.


Asunto(s)
Factores de Transcripción , Zea mays , Zea mays/genética , Zea mays/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Activación Transcripcional , Bacterias/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Ceras/metabolismo
18.
PLoS One ; 18(5): e0285751, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37172054

RESUMEN

Calanus finmarchicus is one of the most important zooplankton species in the North Atlantic. The zooplankton is currently being harvested and industrially processed to a marine oil product for human consumption as a marine nutraceutical containing long-chain omega-3 polyunsaturated fatty acids. This oil is very rich in wax esters, a lipid class where fatty acids are esterified to long chain fatty alcohols. In this paper we describe a simple method to 1) isolate the wax esters from the other lipid classes present in the oil, 2) hydrolyze the wax esters, and 3) separate the fatty acids from the fatty alcohol, all by means of solid phase extraction. Starting with an average of 322 mg Calanus oil, we obtained 75 mg fatty alcohols and 63 mg fatty acids. Contrary to previously described techniques, our method neither oxidize the fatty alcohols to fatty acids, nor are the fatty acids methylated, allowing the native, unesterified fatty acids and fatty alcohols to be used for further studies, such as in cell culture experiments to study the metabolic effects of these specific lipid fractions rather than the intact oil or wax esters.


Asunto(s)
Ácidos Grasos Omega-3 , Ácidos Grasos , Animales , Humanos , Ácidos Grasos/metabolismo , Alcoholes Grasos , Ceras/metabolismo , Ésteres/metabolismo , Zooplancton/metabolismo
19.
Int J Mol Sci ; 24(7)2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37047735

RESUMEN

Plant surface properties are crucial determinants of resilience to abiotic and biotic stresses. The outer layer of the plant cuticle consists of chemically diverse epicuticular waxes. The WAX INDUCER1/SHINE subfamily of APETALA2/ETHYLENE RESPONSIVE FACTORS regulates cuticle properties in plants. In this study, four barley genes homologous to the Arabidopsis thaliana AtWIN1 gene were mutated using RNA-guided Cas9 endonuclease. Mutations in one of them, the HvWIN1 gene, caused a recessive glossy sheath phenotype associated with ß-diketone deficiency. A complementation test for win1 knockout (KO) and cer-x mutants showed that Cer-X and WIN1 are allelic variants of the same genomic locus. A comparison of the transcriptome from leaf sheaths of win1 KO and wild-type plants revealed a specific and strong downregulation of a large gene cluster residing at the previously known Cer-cqu locus. Our findings allowed us to postulate that the WIN1 transcription factor in barley is a master mediator of the ß-diketone biosynthesis pathway acting through developmental stage- and organ-specific transactivation of the Cer-cqu gene cluster.


Asunto(s)
Arabidopsis , Hordeum , Hordeum/genética , Hordeum/metabolismo , Ceras/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Hojas de la Planta/metabolismo , Familia de Multigenes , Regulación de la Expresión Génica de las Plantas , Epidermis de la Planta/genética
20.
Plant Physiol Biochem ; 198: 107679, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37121165

RESUMEN

Plant cuticles cover aerial organs to limit non-stomatal water loss and protect against insects and pathogens. Cuticles contain complex mixtures of fatty acid-derived waxes, with various chain lengths and diverse functional groups. To further our understanding of the chemical diversity and biosynthesis of these compounds, this study investigated leaf cuticular waxes of Welsh onion (Allium fistulosum L.) wild type and a wax-deficient mutant. Leaf waxes were extracted with chloroform, separated using thin layer chromatography (TLC), and analyzed using gas chromatography-mass spectrometry (GC-MS). The extracts contained typical wax compound classes found in nearly all plant lineages but also two uncommon compound classes. Analyses of characteristic MS fragmentation patterns followed by comparisons with synthetic standards identified the latter as very-long-chain ketones and primary ketols. The ketols were minor compounds, with chain lengths ranging from C28 to C32 and carbonyls mainly on C-18 and C-20 in wild type wax, and a C28 chain with C-16 carbonyl in the mutant. The ketones made up 70% of total wax in the wild type, consisting mainly of C31 isomers with carbonyl group on C-14 or C-16. In contrast, the mutant wax comprised only 4% ketones, with chain lengths C27 and C29 and carbonyls predominantly on C-12 and C-14, respectively. A two-carbon homolog shift between wild type and mutant was also observed in the primary alcohols (a major wax compound class), whilst alkanes exhibited a four-carbon shift. Overall, the compositional data shed light on possible biosynthetic pathways to wax ketones that can be tested in future studies.


Asunto(s)
Allium , Ceras , Ceras/metabolismo , Cebollas/genética , Cebollas/metabolismo , Allium/metabolismo , Alcoholes/análisis , Alcoholes/química , Alcoholes/metabolismo , Hojas de la Planta/metabolismo , Cetonas/análisis , Cetonas/química , Cetonas/metabolismo , Carbono/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA